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Abstract

Estimating 3D human poses from 2D joint positions is an ill-
posed problem, and is further complicated by the fact that
the estimated 2D joints usually have errors to which most of
the 3D pose estimators are sensitive. In this work, we present
an approach to refine inaccurate 3D pose estimations. The
core idea of the approach is to learn a number of bases to ob-
tain tight approximations of the low-dimensional pose man-
ifold where a 3D pose is represented by a convex combina-
tion of the bases. The representation requires that globally
the refined poses are close to the pose manifold thus avoiding
generating illegitimate poses. Second, the designed bases also
have the property to guarantee that the distances among the
body joints of a pose are within reasonable ranges. Experi-
ments on benchmark datasets show that our approach obtains
more legitimate poses over the baselines. In particular, the
limb lengths are closer to the ground truth.

Estimating 3D human poses from monocular images (Nie,
Wei, and Zhu 2017; Tekin et al. 2017; Martinez et al. 2017;
Sun et al. 2017; Pavlakos et al. 2017) is useful for many
applications such as action recognition and human computer
interaction. Compared to 2D poses, 3D poses are viewpoint
invariant thus are more intrinsic representations of human
motion. On the other hand, compared to raw RGB images,
3D poses have lower dimensions and suffer less from the
risk of over-fitting to small datasets.

The task however is very challenging due to several rea-
sons. First, multiple 3D poses may correspond to the same
2D pose and several candidates are even illegitimate. For ex-
ample, the poses may have invalid anthropometric measure-
ments, e.g. limb lengths or bending angles. Second, the input
2D poses are usually automatically estimated from images
and may have large errors in some challenging cases (e.g.
severe occlusions). The errors in 2D poses usually degrade
the estimation accuracy of 3D poses severely. Figure 1 (b)
shows a sample (inaccurate) 3D pose estimated by a strong
baseline (Moreno-Noguer 2017).

In this work, we present an approach to refine inaccurate
3D poses by learning manifold priors from 3D pose datasets.
There are two motivations behind our approach. First, we
know that although 3D poses lie in a high dimensional am-
bient space (e.g. 3×m,m is the number of joints), legitimate

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) (b) (c)

Figure 1: (a) shows the 2D pose estimated by (Cao et al.
2017). The joints highlighted by the yellow dots are those
that were not successfully detected. (b) shows the estimated
3D pose (two views) by the baseline method (Moreno-
Noguer 2017). (c) shows our refined 3D poses.

3D poses only lie in a small bounded region of that space.
See the cyan region in Figure 2 for illustration. The core of
our approach is to learn a bounded and low-dimensional rep-
resentation for that region utilizing a dictionary of bases. See
the red circles in Figure 2. A pose is represented by a convex
combination of the neighboring bases. The neighborhood
requirement enables a local and tight approximation of the
pose manifold. For refinement purpose, a 3D pose will be
projected to generate a valid 3D pose on the manifold. This
basis representation captures the global configuration of all
the body joints.

The second motivation is that, due to the skeletal structure
of a pose, the distances among the body joints of a scale-
normalized pose are bounded by the minimum and maxi-
mum distances. In particular, if a pair of joints form a rigid
limb, then their distance is almost constant for all the nor-
malized poses. This is a local prior for poses which we can
use to locally refine illegitimate poses. We embed this in-
formation into bases and guarantee that locally a pose has
legitimate distances among all joints.

We evaluate our 3D pose refinement approach on two
benchmark datasets: H36M (Ionescu et al. 2014) and MPI-
INF-3DHP (Mehta et al. 2017). We use two strong baselines
(Moreno-Noguer 2017; Martinez et al. 2017) to obtain ini-
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Figure 2: Illustration of the pose refinement approach. The
pink area represents the whole ambient space of the 3D
poses. However, only a small (cyan) region of the space con-
tains legitimate poses. We learn a number of bases (i.e. the
red circles) in the valid region. A 3D pose is represented by
a convex combination of the neighboring bases which guar-
antees that the refined pose is close to the manifold.

tial 3D pose estimations which are fed to our algorithm for
refinement. We observe that our approach consistently ob-
tains more accurate poses after refinement on both datasets.
The improvement is larger when the initially estimated poses
have larger errors. In addition, the limb lengths of the refined
poses are closer to the ground truth.

Related Work
We first review the existing work which treats pose refine-
ment as a post-processing step similar to what we do in this
work. Then we discuss the common techniques that are used
directly in the process of estimating human poses which are
targeted to obtain more legitimate poses.

Akhter and Black (Akhter and Black 2015) proposed a
pose-conditioned joint angle prior for 3D poses. The prior
is learned on a large scale motion capture dataset and can
determine whether each segment of a pose is legitimate in
terms of joint angles. If a segment is illegitimate, it is capa-
ble of refining the segment by truncating the joint angle to be
a legitimate value. This is a local refinement approach which
refines a pose in a segment by segment basis but does not
consider the global configurations of all joints. Fieraru et al.
(Fieraru et al. 2018) proposed a network which takes inputs
of an image and an estimated pose, and outputs a refined 2D
pose by exploring the dependency between the image and
the pose space. However, the effectiveness of the approach
is not validated for 3D poses.

We also review the techniques that are used directly in
the process of estimating 3D poses. The first class (Pitelis,
Russell, and Agapito 2013; Urtasun, Fleet, and Fua 2005;
Elgammal and Lee 2009; Wang et al. 2016; Urtasun et al.
2005; Fan et al. 2014) proposes to learn a low-dimensional
representation for 3D poses in order to suppress the gener-
ation of illegitimate poses that are off-the-manifold. Typi-
cal representation learning methods include Principal Com-
ponent Analysis (PCA) (Ramakrishna, Kanade, and Sheikh
2012) Sparse Coding (SC) (Wang et al. 2014) and Sparse
Subspace Clustering (SSC) (Elhamifar and Vidal 2009).

Generally speaking, these methods all propose to represent
the pose manifold by a set of unbounded hyper-planes. How-
ever, they do not take advantage of the fact that the pose
manifold is actually bounded. As demonstrated in their ex-
periments (Wang et al. 2014), the approach still admits ille-
gitimate poses if no additional constraints are used. We will
compare with these representations in the experiments sec-
tion.

The second class (Taylor 2000; Barrón and Kakadiaris
2001; Ramakrishna, Kanade, and Sheikh 2012; Wang et
al. 2014; Akhter and Black 2015) proposes to enforce
limb length constraints on the 3D poses. The pioneer work
(Taylor 2000; Barrón and Kakadiaris 2001) use the limb
lengths to compute the relative depth between neighboring
joints. Later work (Ramakrishna, Kanade, and Sheikh 2012;
Wang et al. 2014) leverages these constraints in modeling.
The optimization algorithm in (Wang et al. 2014) is com-
plex and may not reach global minimum. The authors in
(Ramakrishna, Kanade, and Sheikh 2012) solve the problem
by using a relaxed constraint.

Our approach learns a piece-wise low-dimensional rep-
resentation for the pose manifold. But different from PCA,
SC and SSC, our representation is bounded which is more
effective in terms of suppressing illegitimate poses. In ad-
dition, the limb length constraints are implicitly embedded
in the representation thus effectively enhances the prior and
simplifies the optimization process.

Notations
We represent a 3D pose y by m joint locations y =
[p31, · · · , p3m] where p3i ∈ R3. We normalize a 3D pose
by the length of its left-lower-arm and denote it as: ŷ =
[p̂31, · · · , p̂3m]. We can recover the unnormalized refined pose
based on the scale of the input pose.

We embed a normalized pose ŷ into a distance matrix
d ∈ Rm×m by computing the distances between every pair
of joints d(i, j) = ‖p̂3i−p̂3j‖2. This distance representation is
rotation and translation invariant which effectively reduces
the pose space and facilitates the learning of the bases. In ad-
dition, this representation also simplifies the enforcement of
the joint distance constraints as discussed in the next section.
In the rest of the paper, we will directly work with distance
matrices unless stated otherwise. In the end we can recover
the 3D pose from the distance matrix by using Multidimen-
sional Scaling (Biswas et al. 2006). The recovered poses will
be aligned to the (probably inaccurate) input pose to recover
the rotation, translation and scale by performing Procrustes
(Gower and Dijksterhuis 2004).

The Basis Representation
We learn a set of K bases B = {b1, · · · , bK} to repre-
sent a distance matrix d by their linear combinations d =∑K
k=1 bkαk. Recall that each entry d(i, j) represents the dis-

tance between the joints i and j. Because of the articulated
structure of human poses, the value of d(i, j) is bounded
by the minimum and the maximum values, i.e. d(i, j) ∈
[δi,jmin, δ

i,j
max]. We require every basis b to respect the distance

ranges: b(i, j) ∈ [δi,jmin, δ
i,j
max] (we will describe how to learn



such bases in subsequent sections) Then a convex combina-
tion of the bases will generate a distance matrix whose en-
tries are guaranteed to be within the corresponding distance
ranges. So we propose to represent a distance matrix d by
convex combinations of the bases B:

α∗ = arg min
α
‖d−

K∑
k=1

bkαk‖2, αk ≥ 0,

K∑
k=1

αk = 1

(1)
We also require the minimum and maximum distances

among the joints are captured by at least one basis to en-
sure that all (valid) distance matrices can be accurately rep-
resented. Mathematically it means: maxk bk(i, j) = δi,jmax
and mink bk(i, j) = δi,jmin where k ∈ {1, · · · ,K} is the in-
dex of the bases in B. Geometrically, it is equivalent to say-
ing that some bases should be positioned at the boundaries
of the manifold. See the red circles on the manifold bound-
aries in Figure 2 for illustration.

Topology Preservation by Local Bases
Convex combinations of the bases will construct a big con-
vex hull which still admits invalid poses especially when the
shape of the manifold is not convex. To alleviate the prob-
lem, we propose to learn a tighter approximation of the pose
manifold by a mixture of small convex hulls as opposed to a
single big convex hull.

Inspired by (Wang et al. 2010), we propose to only ac-
tivate the bases in the neighborhood of a pose to represent
it. For example, in Figure 2, the two black circles are rep-
resented by the bases which are close to them, respectively.
This strategy will effectively construct a set of small convex
hulls, rather than a big convex hull, which provide tighter
approximations of the (non-convex) manifold.

The neighborhood requirement is formulated as follows:

arg min
α
‖d−Bα‖2 + λ‖α� s‖2, α � 0, |α|1 = 1,

(2)
where s = [s1, · · · , sK ]T is a column vector of dimension
K encoding the distances between the distance matrix d

and the K bases: sk = exp(dist(d,bk)σ ). Operator � denotes
element-wise multiplication. σ is a preset parameter that is
used to adjust the weight decay speed. We can see that this
formulation encourages to represent a pose by the neighbor-
ing bases. To enable a compact notation, we assume each ba-
sis bk and distance matrix d (originally has shape of m×m)
have been reshaped to a column vector. So the shape of the
basis dictionary B is m2 ×K.

Basis Learning
Now we discuss how to learn the bases having the two prop-
erties discussed in the beginning of this section: (1) respect
the distance ranges, and meanwhile (2) capture the minimum
and maximum distances.

We denote the set of training distance matrices as D =
{d1, · · · , dN} which are computed from the normalized
training poses. We assume the training set D is representa-
tive so as to have the following two properties: maxl dl(i) =
δimax and minl dl(i) = δimin where l ∈ {1, · · · , N}. Recall

that dl is a column vector and dl(i) is the ith dimension of dl.
It means the extremal values of each dimension are present
in the dataset D.

We first formulate the basis learning problem and then
present two lemmas proving why the formulation has the
two properties described above. We construct each basis by
a convex combination of the training distance matrices. So
learning the bases is equivalent to learning the coefficients
of the combinations:

arg min
β,α

N∑
i=1

‖di −
K∑
k=1

(

N∑
l=1

dl · βl,k) · αi,k‖2

s.t. βl,k ≥ 0, αi,k ≥ 0,
∑N
l=1 βl,k = 1,

∑K
k=1 αi,k = 1

(3)

We omit the neighborhood requirement here for simplicity.
But adding the requirement is trivial. Now we provide a
sketch proof why the bases learned by the above formula-
tion are guaranteed to have the two properties.

Lemma 1. A basis constructed by a convex combination of
the training matrices b =

∑N
l=1 dlβl, βl ≥ 0,

∑N
l=1 βl = 1

is guaranteed to respect the distance limits. In other words,
for each entry j of the basis b we have δjmin ≤ b(j) ≤ δjmax

Proof. Since minl dl(j) ≤
∑N
l=1 dl(j)βl ≤ maxl dl(j)

when βl ≥ 0,
∑N
l=1 βl = 1, so we have δjmin =

minl dl(j) ≤ b(j) ≤ maxl dl(j) = δjmax.

Lemma 2. The bases {bk =
∑N
l=1 dl · βl,k|k = 1, · · · ,K}

learned by minimizing equation (3) are guaranteed to sat-
isfy: maxk bk(j) = δjmax and mink bk(j) = δjmin.

Proof. First, we can prove that when maxk bk(j) = δjmax
and mink bk(j) = δjmin, then the value of the objective func-
tion in equation (3) decreases to 0 because all the possible
values between the minimum and the maximum values can
be accurately represented. Then we can also prove that when
maxk bk(j) ≤ δjmax or mink bk(j) ≥ δjmin, then there are
distance matrices whose jth entries cannot be accurately re-
constructed. So the value of the objective function is larger
than 0 which is not optimal. So by minimizing equation (3),
we will have maxk bk(j) = δjmax and mink bk(j) = δjmin
which achieves the optimal objective value of zero.

Optimization
The formulation in equation (3) is non-convex. But it is con-
vex when optimizing each set of variables αs and βs in-
dividually with the other set fixed. We use the alternating
method proposed in (Chen, Mairal, and Harchaoui 2014) to
solve the problem. Although there is no guarantee for global
optimum, in our experiments, we observe that the extreme
distances can be well captured by the bases. See Figure 3 for
illustrations. We can see that, for most entries, the extreme
values are approximately captured by the bases.



index of the joint pairs

d
is

ta
n

c
e

s

Figure 3: Visualization of the learned bases. The x-axis is
the index of the matrix entries. The blue points represent the
distances of the data in the training set. The red points are
the minimum and maximum values of the bases. For most
entries, the bases do capture the extremal values. Because
the problem is not convex, it is possible that some entries
have sub-optimal values. We only visualize several entries
for simplicity. (Best view in color)

Refining Inaccurate Human Poses
After learning the bases, given an input pose y, we first nor-
malize it and compute the corresponding distance matrix d.
Then we refine the distance matrix by projecting it to the
valid regions spanned by the bases:

α∗ = arg min
α
‖d−Bα‖2 + λ‖α� s‖2, α � 0, |α|1 = 1,

(4)
The refined distance matrix is denoted as d∗ = Bα∗. Then
we recover the 3D pose from d∗ by multidimensional scaling
(Biswas et al. 2006). The recovered 3D pose is up to a trans-
lation, rotation, scaling and reflexion transformation to the
input unnormalized pose y. We perform Procrustes to align
the recovered pose to y. It is worth noting that the ground
truth is not used in the process making the subsequent com-
parisons completely fair.

Experiments for Property Verification
We first systematically evaluate the properties of the repre-
sentation. Generally, if a 3D pose is valid (e.g. a ground truth
3D pose), the bases should reconstruct it with sufficient ac-
curacy. In contrast, if a pose is invalid (e.g. having incorrect
limb lengths), it should be projected to generate a valid pose
which is close to the input pose.

Datasets
We first evaluate on the H36M dataset (Ionescu et al. 2014).
There are 15 daily actions recorded by seven subjects.
The dataset provides synchronized images, 2D poses and
3D poses. Following the most common evaluation protocol
(Zhou et al. 2017; Pavlakos et al. 2017), we use five subjects
(i.e. S1, S5, S6, S7, S8) for training and two subjects (S9,
S11) for testing. We also evaluate on the MPI-INF-3DHP
(Mehta et al. 2017) dataset which covers outdoor images.
Following the previous work, we directly use the model

trained on the H36M dataset to validate the generalization
capability of the approach.

Evaluation Metrics We use two metrics in our experi-
ments. The first one is mean per joint position error (MPJPE)
between the groundtruth 3D pose y = [p31, · · · , p3m] and the
estimated 3D pose ȳ = [p̄31, · · · , p̄3m] which is computed as
1
m

∑m
i=1 ‖p3i − p̄3i ‖2. Then we compute the average error

over all poses of each action in the dataset.
The second metric is the Percentage of Correct Keypoints

for 3D poses (PCK3D) (Mehta et al. 2017) which is a 3D
extension of the PCK used in 2D pose estimation (Tomp-
son et al. 2014). If the estimated joint position is within a
neighborhood of the ground truth joint, then it is regarded as
being correctly estimated. Then we compute the percentage
of the correctly estimated joints. The neighborhood thresh-
old is set to be 150mm, corresponding to roughly half of the
head size, as in the previous work. This metric is more ex-
pressive and robust than MPJPE, revealing individual joint
mis-predictions more strongly.

Experimental Results
Reconstruct the Training Set of H36M We first learn in-
dependent basis dictionaries for each of the 15 actions in
the training set by equation 3. Then we reconstruct each dis-
tance matrix d in the training set by equation (4). Then we
recover the 3D pose from the reconstructed distance matrix
using multidimensional scaling (Biswas et al. 2006). Finally,
we align the recovered 3D pose to the original pose by Pro-
crustes and compute the MPJPE.

The top section of Table 1 shows the results. When we
learn a small number of 200 bases for each of the 15 actions,
the reconstruction error is about 7.89mm which is already
reasonably small. When we increase the number of bases,
the reconstruction error consistently decreases. For example,
the error is as small as 1.96mm when we learn 1, 000 bases.
The results indicate that the valid 3D poses do lie in a small
(probably low dimensional) space which can be accurately
reconstructed by a small number of bases.

Reconstruct the Testing Set of H36M We also validate
whether the bases can accurately reconstruct the poses in
the testing set. This generalization capability is critical for
the approach to be used in a real environment. See the bot-
tom section of Table 1 for the results. First, the errors are
larger than those on the training set. This is reasonable be-
cause the test sets are captured by different subjects who
may perform the same action in very different styles. The
error is about 28mm when 400 bases are used. Using more
bases (e.g. 1000) cannot further decrease the error due to the
large differences between the two sets.

To solve the problem, we learn a single big dictionary for
all actions together. Compared to the action-wise dictionar-
ies, it is more probable for the big dictionary to have better
generalization power because it is learned on a larger set of
poses. We can see from Table 1 that the reconstruction er-
rors on the test set decrease significantly. It is surprising that
the reconstruction error is as low as 25mm when we learn
only 200 bases for all actions. This means many poses are



Table 1: H36M dataset: Reconstruction errors measured by MPJPE (mm) when we learn different numbers of bases for each
of the 15 actions. The rows with the superscript * means we learn a single dictionary for all actions. The top and bottom sections
of the table show the results on the training and testing sets, respectively.

K (train) Direc. Discu. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

200 6.90 7.81 5.75 8.51 7.32 9.72 5.77 7.64 13.44 8.88 6.34 9.37 6.81 7.74 6.29 7.89
400 4.37 4.78 3.37 4.55 4.32 4.94 3.02 4.01 7.79 4.80 3.39 5.15 4.31 4.29 3.73 4.45
1000 2.15 2.49 1.52 1.67 1.99 1.84 1.32 1.61 2.91 2.22 1.49 2.08 2.27 1.95 1.94 1.96
200∗ 14.96 15.98 14.02 19.05 17.88 29.49 14.89 19.82 23.42 17.97 21.65 23.30 18.10 18.55 18.09 19.15
400∗ 12.17 11.98 9.41 13.90 12.75 23.97 10.29 12.06 17.54 13.26 16.14 17.42 12.20 13.27 11.94 13.89
1000∗ 6.60 7.14 5.66 8.70 7.15 12.56 6.33 6.82 10.21 7.44 7.91 8.40 6.56 7.88 7.48 7.79

K (test) Direc. Discu. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

200 27.75 33.58 25.10 27.68 34.25 24.58 18.55 35.58 30.54 36.74 44.72 26.29 17.56 32.82 21.67 29.16
400 24.18 30.92 24.16 25.19 32.84 24.28 20.34 35.04 30.59 36.09 41.83 24.38 14.94 28.33 20.39 27.57
1000 25.19 30.05 23.86 30.09 34.89 26.83 18.93 34.08 32.78 31.27 43.41 36.05 16.05 27.13 23.59 28.95
200∗ 22.41 23.11 20.22 26.93 27.92 26.37 17.78 27.28 34.02 25.85 31.53 27.85 19.32 22.79 21.69 25.00
400∗ 19.63 19.77 17.57 24.02 22.40 21.12 16.29 24.85 31.01 22.92 28.75 24.92 16.48 19.85 18.15 21.85
1000∗ 16.89 16.49 14.81 19.15 19.20 19.41 13.90 22.55 28.88 19.84 25.08 20.04 13.77 16.32 15.56 18.79

actually shared between actions thus it is more reasonable
to learn bases for all actions together. In particular, the error
decreases to 18.79mm when we learn 1000 bases. This is
accurate enough for many applications.

Reconstruct the Invalid Poses We also investigate the be-
haviors of the approach when the input 3D poses are invalid.
We add large noises to the ground truth 3D poses and apply
the approach (Akhter and Black 2015) to testify whether the
bones of the corrupted pose is valid. If there is any invalid
bone, we regard the corrupted pose as invalid. We obtain
30K invalid poses for our experiment.

We use the PCK3D metric because it is more expressive
in terms of revealing individual joint errors. Table 2 shows
the results. As expected, when only a small number of joints
are corrupted, the PCK3Ds of the corrupted and the refined
poses are very similar. The differences become larger when
more joints are corrupted. For example, when 14 out of
the 17 joints are corrupted, the average PCK3D of the cor-
rupted poses is about 67%. However, after refinement, the
PCK3D increases to 84% which demonstrates that the pro-
posed approach effectively refines the inaccurate poses. Fig-
ure 4 shows some typical examples.

Experiments for Human Pose Estimation

We use (Martinez et al. 2017) and (Moreno-Noguer 2017) as
our 3D pose estimation baselines which obtain the state-of-
the-art performance. We obtain the 2D poses, which are the
inputs to the 3D pose estimators, in two ways: (1) they are
estimated from images by (Newell, Yang, and Deng 2016).
Because the images in the two datasets are simple (e.g. sim-
ple background and clothing), the estimated 2D poses are
rather accurate. However, this is different from real scenar-
ios; (2) we learn an error distribution for the 2D poses in the
more complex datasets MPII (Andriluka et al. 2014a) and
COCO (Lin et al. 2014). Then we sample errors and add
them to the ground truth 2D poses of the H36M dataset to
simulate the situation when 2D poses are not perfect.

Implementation Details

For the first baseline (Martinez et al. 2017), which we de-
note as Simple Baseline, we use the code provided by the
authors to train the 3D pose estimator. All the details are
kept the same as in the original paper for fair comparison.
The second baseline (Moreno-Noguer 2017) is denoted as
Matrix Baseline. We implemented the approach using Py-
torch and achieved comparable results as the paper. We learn
1000 bases for all the training poses.

ground truth pose corrupted pose refined pose

Figure 4: Pose refinement examples. When the corrupted
pose is mostly valid, then the refined pose is very similar
to it. See the first two rows. When the corrupted pose be-
comes invalid, then our approach will project it to generate
a valid pose. In the third row, the bending angle of the red
leg is invalid, but after refinement, it becomes valid.



Table 2: H36M dataset (testing set): Reconstruction errors measured by PCK3D when different numbers of joints are corrupted
in a 3D pose. The rows with the superscript* are the results of the refined poses.

Number
of Invalid Joints

Direc. Discu. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

1 97.10 97.84 97.62 97.30 97.53 97.17 96.83 97.50 97.21 97.40 97.21 97.36 97.11 97.16 97.78 97.34
1* 99.55 99.36 99.26 99.10 99.47 98.80 99.70 99.56 98.94 99.52 99.70 99.07 99.40 99.16 99.56 99.34

3 91.95 92.14 93.30 92.32 92.75 91.72 91.70 91.84 92.23 92.16 93.42 93.13 92.92 92.12 92.79 92.43
3* 96.83 96.92 98.73 96.41 97.74 97.28 97.59 98.38 98.04 97.40 98.11 96.76 96.81 98.21 98.34 97.57

5 88.51 87.82 89.13 86.93 88.03 87.80 87.18 85.66 89.06 88.08 87.34 86.38 87.84 88.55 85.79 87.61
5* 94.12 95.77 97.77 91.91 96.01 91.72 96.98 96.69 97.13 96.29 94.82 92.86 93.92 96.95 93.23 95.08

14 64.80 67.05 67.91 64.79 68.38 65.14 65.61 68.38 68.48 67.30 69.29 66.82 69.49 68.07 69.15 67.38
14* 82.17 85.39 90.02 80.80 86.66 81.05 87.33 90.15 90.50 87.02 89.13 80.37 79.36 86.66 76.80 84.89

GT 2D Poses Corrupted 2D Poses GT 3D Poses Corrupted 3D Poses Refined 3D Poses

Figure 5: 3D pose estimation and refinement samples. When
the added 2D noises are small, the estimated 3D poses are
mostly accurate. In these cases, the refined 3D poses are also
accurate. When the 2D noises are large, the estimated 3D
poses begin to become illegitimate in terms of either limb
lengths or bending angles. In these cases, the refined 3D
poses are significantly better than the initial estimations.

Using Estimated 2D Poses
Table 3 shows the 3D pose estimation accuracy when the
input 2D poses are automatically estimated. We observe
marginal but consistent improvement over both baselines.
In particular, for the Matrix baseline whose initial accuracy
is lower, our approach obtains larger improvement. We also
observe that the limb lengths of the refined poses are also
close to the ground truth. Figure 6 shows the limb length
errors of the estimated/refined 3D poses.

Using Synthesized 2D Poses
We first apply the 2D pose estimator (Newell, Yang, and
Deng 2016) to the images from the MPII and the COCO
datasets. Then we compute an error vector for each estima-
tion. We divide the error vectors into three groups accord-
ing to the largest absolute value in each vector. The first
group contains the error vectors whose largest absolute val-
ues are smaller than 10 pixels. The second group contains
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Figure 6: Limb length errors of the estimated 3D poses of
the three approaches on the H36M dataset.

those which are between 10 and 15 pixels. The third group
contains those which are between 15 and 20 pixels. Then
we fit a Mixture-of-Gaussian model for each group, respec-
tively. The number of mixtures is set to be five.

In the testing stage, we first sample error vectors from
the distributions and then add them to the ground truth 2D
poses in the H36M dataset. We feed the corrupted 2D poses
into the baseline methods to obtain the 3D estimations. We
report errors for each of the three groups, respectively. Ta-
ble 4 shows the results. When the 2D poses have minimum
level of errors, the baselines get reasonably good results, e.g.
94.25% for the Simple baseline. This result shows that the
baselines are robust to small errors in 2D. However, when we
consistently increase the errors, the baseline methods begin
to generate severely degraded estimations. For example, for
the third group, the PCK3D of the Simple baseline decreases
to 71.73%. In this case, applying our refinement approach
increases the accuracy to 81.03%. Figure 5 shows several
estimation samples.

We also compare with other basis representations includ-
ing PCA and sparse coding. The number of bases for each
method is set by cross validation. Table 4 shows the results.
First, PCA makes negligible difference for the three groups
of experiments. In some cases, it even degrades the accuracy.
This is reasonable because the poses of the 15 actions can-
not accurately represented by the orthogonal bases learned
by PCA. Actually, there is a trade-off. We can achieve more
accurate representations if we use more bases. But it will
also harm the power of refinement. The bases learned by



Table 3: H36M dataset: 3D pose estimation results of the two baselines and our refinement approach. The metric is PCK3D.

Methods Direc. Discu. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Simple 98.96 99.12 98.24 98.72 99.20 96.54 96.50 96.63 98.33 98.10 98.42 98.62 97.33 97.61 98.31 98.03
Refine 100.00 98.53 98.05 97.30 100.00 98.90 98.18 99.10 100.00 99.15 100.00 97.03 97.65 99.14 98.30 98.75

Matrix 97.87 93.41 97.67 95.94 99.53 97.50 96.81 96.21 95.97 97.55 98.31 94.68 96.40 97.55 96.71 96.81
Refine 97.92 94.73 97.93 97.59 100.00 100.00 96.84 97.42 96.21 98.09 98.41 95.41 96.81 98.03 96.87 97.60

Table 4: H36M dataset: 3D Pose estimation results of the two baselines and our approach. The 2D poses are the corrupted
ground truth by adding noises sampled from Gaussian distributions of different variances. The metric is PCK3D.

Noise
Level

Direc. Discu. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Noise=10
Simple 95.80 90.31 95.33 93.59 96.76 93.03 94.50 95.49 93.40 91.48 94.84 94.71 92.88 95.59 96.11 94.25
PCA 94.46 89.89 94.13 92.54 94.64 92.47 93.08 95.38 93.04 90.95 94.47 94.17 91.80 95.43 95.43 93.46

Sparse 94.77 90.39 95.09 92.90 96.51 92.86 94.68 94.45 93.49 91.06 93.01 95.75 91.62 95.81 96.14 93.97
Refine 94.96 90.66 95.85 94.33 95.59 93.90 93.36 95.49 93.11 93.31 94.84 92.55 92.41 96.32 95.93 94.17

Noise=15
Simple 84.98 86.97 84.79 86.38 87.18 86.47 84.22 77.42 81.26 85.74 90.76 85.59 84.51 82.70 79.58 84.57
PCA 82.37 86.75 82.27 88.53 82.51 84.20 80.86 81.65 78.35 89.97 93.64 88.18 83.53 77.98 80.49 84.09

Sparse 86.00 89.28 85.93 86.73 88.29 86.99 87.08 78.36 82.74 89.59 91.27 86.84 89.67 86.10 83.69 86.57
Refine 88.39 88.87 88.03 90.30 89.08 90.00 87.37 82.92 83.88 90.44 91.29 92.94 86.86 85.64 83.22 87.94

Noise=20
Simple 63.84 72.45 76.47 75.00 70.12 71.35 74.65 65.92 74.07 71.49 67.35 73.92 72.90 76.08 70.30 71.73
PCA 64.04 74.21 76.52 76.96 71.84 72.68 75.72 68.84 74.20 75.34 68.75 75.81 73.56 77.42 75.04 73.39

Sparse 71.27 79.58 77.74 76.11 70.77 78.99 76.45 68.61 85.42 75.36 70.91 76.06 75.73 76.80 82.96 76.18
Refine 77.68 82.77 81.93 83.38 80.65 79.51 83.98 75.61 79.74 82.90 80.88 84.51 82.46 80.20 79.34 81.03

Figure 7: Estimated 3D poses on the MPII dataset. We do
not train our model on this dataset. If a 2D joint was not
detected, it is highlighted by a yellow marker. The results
validate that our method has good generalization power.

sparse coding (Mairal et al. 2009) can refine the inaccurate
poses to some extent. But our approach obtains larger im-
provement. We guess the main reason is because our repre-
sentation achieves a tighter approximation of the manifold
and generates 3D poses with reasonable limb lengths.

Generalization Capability
We first evaluate our approach on the wild images from the
MPII dataset (Andriluka et al. 2014b) without re-training the
baselines and bases. Since we do not have the ground truth
3D poses for this dataset, we show several estimation ex-
amples in Figure 7. The visualized results are obtained by
refining the poses estimated by the Simple baseline. Note
that some 2D joints were not estimated successfully as high-
lighted in the figure. We can see that the refined poses are
mostly reasonable which suggests the bases generalize well

Table 5: Comparison with the state-of-the-arts of the 3D
pose estimation results on the MPI-INF-3DHP dataset mea-
sured by PCK3D.

GS NO GS Outdoor ALL PCK AUC
Matrix 69.1 61.3 70.7 67.2 29.3
Refined 73.4 65.2 74.6 72.4 34.6
Simple 71.9 63.7 72.7 69.4 30.5
Refined 74.2 67.8 76.2 74.5 36.6

to unseen poses in other datasets.
We also test on the MPI-INF-3DHP dataset. Table 5

shows the results. Our method outperforms the baselines
consistently which demonstrates the effectiveness and the
generalization power of the refinement approach.

Conclusion
We present a basis representation for refining illegitimate 3D
human poses. The representation captures the global config-
urations of all joints and suppresses the generation of illegit-
imate 3D poses that are off-the-manifold. Locally, the rep-
resentation guarantees that the refined 3D poses have rea-
sonable limb lengths. The effect is significant when 3D pose
estimations have large errors, e.g. when the input 2D poses
are not very accurate, which is common in real deployment.
The learned bases have reasonably good generalization ca-
pabilities as validated on other datasets.
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